Empirical Support for Probabilistic GLR Parsing

Virach Sornlertlamvanich and et al. Department of Computer Science, Tokyo Institute of Technology.

JSPS-HITACHI Workshop 25-26 May 1998

Background

- Probabilistic parsing:
 - filter out meaningless parses
 - aid in choosing/ranking for the most likely interpretation
- Probabilistic parsers:
 - Original PCFG: insufficient context
 - Chitrao and Grishman (90): Two-level
 PCFG
 - Su et al. (91): shift-reduce parsing framework
 - Black et al. (92): History-Based Grammar (HBG)
 - Magerman et al. (95): Chart, CKY, statistical decision-tree
 - etc.
 - ⇒ Originated from PCFG, extended to include more context, modeled independently from the parsing algorithms.

Background

- Probabilistic parsers in the GLR parsing framework:
 - Wright and Wrigley (91): identical to PCFG
 - Goddeau and Zue (92): input symbol prediction
 - Briscoe and Carroll (93): action probability
 - Li et al. (96): pre-terminal bi-gram constraints
 - \Rightarrow inherit the efficiency of GLR parsing.
 - \Rightarrow use the provided context of GLR parsing.

Aims of this research

- Verify our newly proposed model, Probabilistic GLR (PGLR) model.
- Evaluate the PGLR model against the existing Briscoe & Carroll (B&C) and Twolevel PCFG models.
- Analytical discussion on the results.
- Implementation with a CLR table, compared to an LALR table.

GLR parsing

 A table-driven shift-reduce left-to-right parser for context-free grammars, constructing a rightmost derivation in reverse.

$$action_{i+1} = [state_i, symbol_{i+1}]$$

• Configuration:

<u>stack</u>

input

given:

 $(s_0 X_1 s_1 X_2 s_2 \cdots X_m s_m, \qquad a_i a_{i+1} \cdots a_n \$)$

shift action:

 $(s_0 X_1 s_1 X_2 s_2 \cdots X_m s_m a_i s, \qquad a_{i+1} \cdots a_n \$)$

reduce action:

 $(s_0X_1s_1X_2s_2\cdots X_{m-r}s_{m-r}As, \quad a_ia_{i+1}\cdots a_n\$)$

 \Rightarrow Stack transitions

GLR parsing

- Grammar: (1) $S \rightarrow S S$ (2) $S \rightarrow x$
- LR table:

	action	goto	
state	Х	\$	S
0	sh1		2
1	re2	re2	
2	sh1	acc	3
3	re1 / sh1	re1	3

⇒ A pair of state and input symbol is the constraint for selecting the parsing action.

Briscoe & Carroll's model

- A parse tree is regarded as a sequence of state transitions.
- Action probability is the probability of a transition out of a state. Therefore, action probabilities are normalized within each state.
- Probability for a reduce action is subdivided according to the state reached after applying the action, aiming at capturing the left context during the parse.
- Parse probability is the geometric mean of the applied action probabilities, to avoid the bias in favor of parsing involving fewer rules.

Briscoe & Carroll's model

8

Briscoe & Carroll's model

- Advantages:
 - inherit the efficiency of GLR parsing
 - use the provided context by the nature of the GLR parsing Left context: parsing state Right context: input symbol
- Problematic issues:
 - no probabilistic formalization
 - input symbol after applying a reduce action is not changed
 - stack-top state after stack-pop operation is deterministic

Summary: B&C vs PGLR

<u>Normalization</u>

B&C: within each state. **PGLR**: according to state membership, i.e. in S_s or S_r .

Transition probability:

$$P(l_i, a_i, \sigma_i | \sigma_{i-1}) \approx \begin{cases} P(l_i, a_i | s_{i-1}) & \text{(for } s_{i-1} \in S_s) \\ P(a_i | s_{i-1}, l_i) & \text{(for } s_{i-1} \in S_r) \end{cases}$$

 S_s : s_0 and all the states reached after a shift action

 S_r : all the states reached after a reduce action

$$(S_s \cap S_r = \emptyset)$$

Summary: B&C vs PGLR

- Action probability
 - **B&C**: reduce actions are subdivided according to the state reached after applying the action.
 - **PGLR :** one action one probability.
- Parse probability
 - **B&C**: geometric mean of action probabilities applied for a parse.
 - **PGLR :** product of action probabilities applied for a parse.

Summary: B&C vs PGLR

	action	goto	
state	X	\$	S
0	sh1 (5)		2
	1.0		
	1.0		
1	re2 (10)	re2 (5)	
	⁽⁰⁾ .33; ⁽²⁾ .33	⁽²⁾ .26; ⁽³⁾ .08	
	.67	.33	
2	sh1 (9)	acc (5)	3
	.64	.36	
	1.0	1.0	
3	re1 (4) / sh1 (1)	re1 (6)	3
	⁽⁰⁾ .36 / .09	⁽⁰⁾ .45; ⁽²⁾ .09	
	.80 / .20	1.0	

Two-level PCFG

- Two-level PCFG (Chitrao and Grishman, 1990)
- Pseudo Context-sensitive Grammar (Charniak and Carroll, 1994)

 $P(VP \rightarrow adverb, verb \mid \rho(VP) = NP)$

- \Rightarrow Incorporate context for PCFG.
- \Rightarrow Accurately reflect the true distribution of English (word based) language string.
- ⇒ Minimize the model's per-word (per-tag) cross entropy.

Evaluation

- Morphological and syntactic analysis:
 - Given a string of characters as the input
 - The task includes: word segmentation, POS tagging and parse tree construction
- ATR Japanese corpus
- Grammar:
 - 762 rules of the Japanese phrase structure grammar
 - 137 non-terminal symbols
 - 407 terminal symbols

Model trainability

Model analysis

• Rule probabilities for Two-level PCFG:

(1)	S	; X	\rightarrow	U	С	(1/3)
(2)	S	; ×	\rightarrow	U		(2/3)
		; U				(1/3)
(4)	Х	; U	\rightarrow	b		(2/3)

Comparative results for Two-level PCFG, B&C and PGLR

(S1)[1] (S2)[2] (S3)[0]

Models	(S1)	(S2)	(S 3)
PCFG	1/9	4/9	2/9
Two-level PCFG	1/9	4/9	2/9
B&C	1/6	1/3	0
PGLR	1/3	2/3	0

- The degree of context-sensitivity of the states in CLR table is higher than those in LALR table.
- Data sparseness problems in using CLR table.

	LALR table	CLR table
States	856	3,715
Shift	11,445	43,833
Reduce	164,058	756,715
Goto	4,682	19,733
States in S_s	488	2,539
States in S_r	368	1,176

23

Conclusion and future work

- Parse performance:
 PGLR > B&C > Two-level PCFG > PCFG
- The PGLR model is able to make effective use of both global and local context provided in the GLR parsing framework.
- No significant distinction between the results of PGLR(LALR) and PGLR(CLR).
- \Rightarrow Lexicalize the probabilistic model
- \Rightarrow Include long distance constraints
- ⇒ Verify the PGLR model with a larger corpus